GDAP: a web tool for genome-wide protein disulfide bond prediction
نویسندگان
چکیده
The Genomic Disulfide Analysis Program (GDAP) provides web access to computationally predicted protein disulfide bonds for over one hundred microbial genomes, including both bacterial and achaeal species. In the GDAP process, sequences of unknown structure are mapped, when possible, to known homologous Protein Data Bank (PDB) structures, after which specific distance criteria are applied to predict disulfide bonds. GDAP also accepts user-supplied protein sequences and subsequently queries the PDB sequence database for the best matches, scans for possible disulfide bonds and returns the results to the client. These predictions are useful for a variety of applications and have previously been used to show a dramatic preference in certain thermophilic archaea and bacteria for disulfide bonds within intracellular proteins. Given the central role these stabilizing, covalent bonds play in such organisms, the predictions available from GDAP provide a rich data source for designing site-directed mutants with more stable thermal profiles. The GDAP web application is a gateway to this information and can be used to understand the role disulfide bonds play in protein stability both in these unusual organisms and in sequences of interest to the individual researcher. The prediction server can be accessed at http://www.doe-mbi.ucla.edu/Services/GDAP.
منابع مشابه
DiANNA: a web server for disulfide connectivity prediction
Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the...
متن کاملInter- and intra-chain disulfide bond prediction based on optimal feature selection.
Protein disulfide bond is formed during post-translational modifications, and has been implicated in various physiological and pathological processes. Proper localization of disulfide bonds also facilitates the prediction of protein three-dimensional (3D) structure. However, it is both time-consuming and labor-intensive using conventional experimental approaches to determine disulfide bonds, es...
متن کاملA Prediction Method of Protein Disulfide Bond Based on Hybrid Strategy
A prediction method of protein disulfide bond based on support vector machine and sample selection is proposed in this paper. First, the protein sequences selected are encoded according to a certain encoding, input data for the prediction model of protein disulfide bond is generated; Then sample selection technique is used to select a portion of input data as training samples of support vector ...
متن کاملPrediction Method of Protein Disulfide Bond Based on Pattern Selection
The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction methods, therefore the prediction accuracy of protein contact was reduced. In order to improve the influence of training samples, a prediction method of protein disulfide bond on the...
متن کاملGenome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity
The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 Web Server issue شماره
صفحات -
تاریخ انتشار 2004